
1

Title: IoT Water Leakage Indicator

I. Summary

This project will keep you aware about leakage of water from pipe or tank. Leaks from

pipes, plumbing fixtures and fittings are a significant source of water waste for many

households. Research has shown that the typical home can lose 2,000 to 20,000 gallons

of water per year due to leaks. Some leaks are obvious, such as dripping faucets and

leaking water heaters. Unfortunately, many leaks go undetected for years because the

source of the leak is not visible.

II. Objectives

1. To show the student how to use an Arduino (Micro-Controller)

2. To show the student how to use IoT (Internet of Things)

III. Industry-Based Applications

In the Nuclear Industry, many pipes and valves are used to clean and heat radioactive water.

Eventually, these pumps, pipes, and valves begin to degrade during the Nuclear Plants lifetime.

For example, the water is pressurized for cooling and heating which, in turn, allows for the water

to be recycled.[1] Preventative measures are done daily, weekly, monthly, and annually to ensure

that none of the water or contaminates are released into the water and to the public.

IV. Project Methodology

In this project, we will use an Arduino, which is a Micro-controller. Next, a transistor

LM7805, ESP266 wife module, a 3.3-9 Volt power supply, Arduino software, and access

to a Smart server. The idea of this project is to introduce students to alarm systems such

2

that they focus on preventative measure related to the scope of their project ideas or careers.

This will teach students how to use and navigate a server, Micro-controller and transistors.

V. Project Procedure

Step 1. A 9V battery is used as a power supply. Also, the project requires a 7805-voltage

regulator to receive 9 V potential which then feeds into the Arduino.

Figure 1-a.

3

Figure 1-b.

Step 2. Next, the ESP266 is connected as a way of powering the device. The output of the

Arduino in connected to the 3.3V to the ESP8266. The reason being, is that the ESP8266

only works with 3.3V and NOT the 5V.

Figure 2-a.

Figure 2-b. Esp8266 WIFI Module

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=&url=https%3A%2F%2Fwww.electrical4u.com%2Fvoltage-regulator-7805%2F&psig=AOvVaw096COqSFFzbjgobxfnRjO-&ust=1572360069560253

4

Step 3: This step is very important such that the student needs to make sure the Arduino

is connected appropriately. This step is to connect the RX and TX. Connect the RXD pin

of the Arduino to the RX pin of the ESP8266.Connect the TXD pin of the Arduino to the

TX pin of the ESP. When we want two things to talk to each other over serial, we connect

the TX pin of one to the RX of the other (send goes to receive and the opposite). Here we

do not have the Arduino talk to the ESP8266 though, our computer is talking to it via the

Arduino.

Figure 3-a.

5

Step 4: This step introduces the GND and RST. Connect the RES or RESET pin, when

you ground the reset pin, the Arduino works as a dumb USB to serial connector, which is

what we want to talk to the ESP8266.

Figure 4-a.

Step 5a: This step includes two parts. Next we connect Arduino and water sensor.

We connect Arduino VCC and GND to water sensor VCC and GND. Arduino digital Pin

2 is connected to digital out pin of water sensor. The following link will show you about

the sensor:

https://youtu.be/7AzMLL5yXak

https://youtu.be/7AzMLL5yXak

6

5b: Upload the code to the downloaded software.

#include <Esp8266EasyIoT.h>
#include <SoftwareSerial.h>

Esp8266EasyIoT esp;

SoftwareSerial serialEsp(10, 11);

#define LEAK_PIN 2 // Arduino Digital I/O pin number
#define CHILD_ID_LEAK 0

Esp8266EasyIoTMsg msgLeak(CHILD_ID_LEAK, V_DIGITAL_VALUE);
//Esp8266EasyIoTMsg msgHum(CHILD_ID_LEAK, V_LEAK); // supported in esp >= V1.1 lib

int lastLeakValue = -1;

void setup()
{
 serialEsp.begin(9600);
 Serial.begin(115200);

 Serial.println("EasyIoTEsp init");
 esp.begin(NULL, 3, &serialEsp, &Serial);

 pinMode(LEAK_PIN, INPUT);

 esp.present(CHILD_ID_LEAK, S_LEAK);
}

void loop()
{
 esp.process();

 // Read digital pin value
 int leakValue = digitalRead(LEAK_PIN);
 // send if changed

7

 if (leakValue != lastLeakValue) {
 Serial.println(leakValue);
 esp.send(msgLeak.set(leakValue==0?0:1));
 lastLeakValue = leakValue;
 }
}

Code copied from Arduino:

void setup() {

 // put your setup code here, to run once:

#include <Esp8266EasyIoT.h>

#include <SoftwareSerial.h>

Esp8266EasyIoT esp;

SoftwareSerial serialEsp(10, 11);

#define LEAK_PIN 2 // Arduino Digital I/O pin number

#define CHILD_ID_LEAK 0

Esp8266EasyIoTMsg msgLeak(CHILD_ID_LEAK, V_DIGITAL_VALUE);

//Esp8266EasyIoTMsg msgHum(CHILD_ID_LEAK, V_LEAK); // supported in esp >= V1.1 lib

int lastLeakValue = -1;

void setup()

{

 serialEsp.begin(9600);

 Serial.begin(115200);

 Serial.println("EasyIoTEsp init");

 esp.begin(NULL, 3, &serialEsp, &Serial);

8

 pinMode(LEAK_PIN, INPUT);

 esp.present(CHILD_ID_LEAK, S_LEAK);

}

void loop()

{

 esp.process();

 // Read digital pin value

 int leakValue = digitalRead(LEAK_PIN);

 // send if changed

 if (leakValue != lastLeakValue) {

 Serial.println(leakValue);

 esp.send(msgLeak.set(leakValue==0?0:1));

 lastLeakValue = leakValue;

 }

}

Step 6: Connect to an online or on-campus server Such as EasyIOT server. [2]

This section will describe in detail how your project will be performed. You need to provide

clear pictures and videos’ links. You may start by a sub-title telling the components and explain

the meaning of each symbol you used and what is/are the purpose/s of each component.

VI. References

1. https://www.nuclear-power.net/reactor-coolant-pump/

2. https://iot-playground.com/download

VII. Appendix

1. 7805 transistor Data Sheet

http://ee-classes.usc.edu/ee459/library/datasheets/LM7805.pdf

https://www.nuclear-power.net/reactor-coolant-pump/
https://iot-playground.com/download
http://ee-classes.usc.edu/ee459/library/datasheets/LM7805.pdf

9

2. Arduino UNO Data Sheet

https://www.farnell.com/datasheets/1682209.pdf

3. Genuino Data Sheet

https://www.mouser.com/catalog/specsheets/arduinocc_GenuinoProducts

Brief.pdf

4. ESP8266 Data Sheet

https://www.espressif.com/sites/default/files/documentation/0a-

esp8266ex_datasheet_en.pdf

https://cdn-shop.adafruit.com/product-files/2471/0A-

ESP8266__Datasheet__EN_v4.3.pdf

Please Note that if you are using a code, it should be provided in the original format with this

report.

https://www.farnell.com/datasheets/1682209.pdf
https://www.mouser.com/catalog/specsheets/arduinocc_GenuinoProductsBrief.pdf
https://www.mouser.com/catalog/specsheets/arduinocc_GenuinoProductsBrief.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://cdn-shop.adafruit.com/product-files/2471/0A-ESP8266__Datasheet__EN_v4.3.pdf
https://cdn-shop.adafruit.com/product-files/2471/0A-ESP8266__Datasheet__EN_v4.3.pdf

