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Abstract

The Belsley, Kuh, and Welch Belsley et al. (1980) diagnostics are applied to the
precision estimator in nonlinear models and the properties are explored via simulation.
The performance of the diagnostics is examined specifically with the ordered probit
model. The performance is examined under several parameterizations and under dif-
ferent degrees of collinearity. The results suggest that the identification of the model’s
parameters is indeed related to collinearity of the data and by the parametric func-
tional form of the model itself. The BKW diagnostics appear to be useful in the sense
that serious problems with identification can be detected quite easily using the built
in vif function of gretl.

Introduction

Adkins et al. (2015) provide gretl functions to compute the Belsley et al. (1980) collinearity
diagnostics that could be used to detect weak identification in linear and nonlinear models.
In this companion, I explore how well the BKW measures perform in nonlinear contexts.
In linear models the rules-of-thumb suggested by BKW indicate how severe the collinearity
problem is and can tell the user whether the variance of a particular coefficient estimator is
adversely affected by collinear data. The diagnostics are now available in the base versions
of GRETL, and preliminary results on the performance of the rules of thumb, which also
include another example, sample selection, can be found in Adkins (2017).

Hill and Adkins (2001) Consider collinearity in linear and nonlinear context and I follow
salient points from their discussion below. In nonlinear models the BKW diagnostics are
computed based on a rescaled variance covariance matrix, and are comparable to what is
currently used in linear models estimated by least squares. In nonlinear models the covariance
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matrix depends on parameters as well as data and the interaction of the two can affect the
identification of parameters.

In nonlinear models weak identification can lead to excessive numbers of iterations, to non-
convergence of the algorithm, or can cause the covariance estimate (e.g., negative of the
inverse Hessian) to be negative definite; if this happens the numerical algorithm fails to
locate the optimum. When any of these happens, one would like to know whether the
problem happens due to data or because of its interaction with parameters. A corrective
strategy may materialize; get better data, adopt a simpler model, or impose additional
constraints on the model.

The generalizability of the diagnostics to nonlinear models is studied using simulations of
two nonlinear models. The average condition numbers and variance decompositions for each
model are presented. The output also includes standard deviations from the Monte Carlo
for each scenario. In this way, the relative variability due to parameter estimation can be
measured. If the estimates play a fairly modest role, then much of the weak identification
of the nonlinear estimator can be attributed to the data, which is similar to the situation in
linear models. The goal is to form a foundation for the expanded use of the BKW condition
number and variance decomposition analysis to the nonlinear world.

The paper is organized as follows. First, I review collinearity and the BKW diagnostics in
linear models. In section 3 the extension of nonlinear models is reconsidered. In section 4 I
examine how the diagnostics perform using an example: ordered probit. Within this section
a set of simulations is conducted and the performance of the BKW diagnostics are studied.
I show that the diagnostics can be quite useful in detecting problems of identification in
ordered probit that are due to either collinearity of the data or to parameterization of the
model.

1 Linear Model

Denote the linear regression model as

y = Xβ + u

where y is a n × 1 vector of observations on the dependent variable, X is a n × k non-
stochastic matrix of observations on k explanatory variables, β is a k× 1 vector of unknown
parameters, and u is the n × 1 vector of uncorrelated random errors, with zero means and
constant variances,σ2. In the general linear model exact, or perfect, collinearity exists when
the columns of X, denoted xi, i = 1, . . . , K, are linearly dependent. That is, if there is at
least one relation of the form c1x1 + c2x2 + · · · + cKxk = 0, where the ci are constants, not
all equal to zero. In this case the column rank of X is less than k, and the normal equations
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XTXβ = XTy do not have a unique solution, and least squares estimation breaks down.
Unique best linear unbiased estimators do not exist for all K parameters. However, even in
this most severe of cases, all is not lost.

Exact collinearity is rare, and easily recognized. More frequently, one or more linear com-
binations of explanatory variables are nearly exact, so that c1x1 + c2x2 + · · · + cKxk ≈ 0.
We now examine the consequences of such near exact linear dependencies. The collinearity
problem can more broadly be viewed as an identification problem. If collinearity is exact,
then identification fails. If collinearity is strong, then the parameters are identified, but they
may be estimated imprecisely given the data on hand.

1.1 Diagnosing Collinearity using the Eigenvalues and Eigenvec-
tors of XTX

The k × k matrix XTX is symmetric. For symmetric matrices their exists an orthonormal
k × k matrix C such that

CTXTXC = Λ (1)

where Λ is a diagonal matrix with the real values λ1, λ2, . . . , λk on the diagonal. An orthonor-
mal matrix, sometimes also called an orthogonal matrix, has the property that CT = C−1,
so that CTC = CCT = Ik, where Ik is a k × k identity matrix. The columns of the matrix
C, denoted ci, are the eigenvectors (or characteristic vectors) of the matrix, and the real
values λi are the corresponding eigenvalues (or characteristic roots). It is customary to as-
sume that the columns of C are arranged so that the eigenvalues are ordered by magnitude,
λ1 ≥ λ2 ≥ . . . ,≥ λk.

Silvey (1969) popularized the use of eigenvalues to diagnose collinearity, and Belsley et al.
(1980) [hereinafter BKW] refined, and improved, the analysis. The n × k matrix Z = XC
is called the matrix of principal components of X. The ith column of Z, zi, is called the
ith principal component. From equation (1) zi has the property that zTi zi = λi. If the
characteristic root λi = 0, then zi = Xci = 0; we have an exact linear relation among the
columns of X, and thus exact collinearity. If rank(X) = ` < k, then we will find k − `
eigenvalues that are zero.

If X is of full column rank k, so that there are no exact linear dependencies among the
columns of X, then is a positive definite and symmetric matrix, and all its eigenvalues are
not only real but also positive. If we find a “small” eigenvalue, λi ≈ 0 , then

λi = zTi zi = cTi X
TXci ≈ 0

and there is a near exact linear dependency among the columns of X. If there is a single
small eigenvalue, then the linear relation indicates the form of the linear dependency, and
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which of the explanatory variables are involved in the relationship. If there are two (or
more) small eigenvalues, then we have two (or more) near exact linear relations. Multiple
linear relationships do not necessarily indicate the form of the linear dependencies. The
eigenvectors associated with the near zero eigenvalues define a 2-dimensional vector space in
which the two near exact linear dependencies exist. While we may not be able to identify the
individual relationships among the explanatory variables that are causing the collinearity,
we can identify the variables that appear in the two (or more) relations.

The singular-value decomposition of X is an alternative technique that achieves the same
goals as the analysis of eigenvalues. For computational reasons there are reasons to prefer the
singular-value decomposition, and the literature on collinearity is divided between the two
approaches. The matrixX may be decomposed asX = UDV T , where UTU = V TV = Ik and
D is a diagonal matrix with non-negative diagonal values µ1, µ2, . . . , µk, called the singular
values of X.

The relation to eigen analysis is that the singular values are the positive square roots of the
eigenvalues of XTX, and the matrix V = C. A small singular value implies a near exact
linear dependence among the columns of X, just as does a small eigenvalue. We will ignore
the computational issues and treat these two approaches as equivalent.

1.2 Collinearity and the Least Squares Estimator

Using equation (1) and the properties of the matrix of eigenvectors C, we can write XTX =
XΛCT , and therefore

(XTX)−1 = CΛ−1CT =
k∑
i=1

λ−1
i cic

T
i (2)

defining C = {c1, c2, . . . , ck} to be the matrix of characteristic vectors. The covariance matrix
of the least squares estimator b is cov(b) = σ2(XTX)−1, and using equation (2) the variance
of bj is

var(bj) = σ2

(
c2j1
λ1

+
c2j2
λ2

+ . . .+
c2jk
λk

)
(3)

The orthonormality of C implies that
∑k

`=1 c
2
j` = 1, so variance of bj depends upon three

distinct factors. First, the magnitude of the error variance, σ2; second, the magnitudes of
the constants cjk; and third, the magnitude of the eigenvalues, λ`. A small eigenvalue may
cause a large variance for bj if it is paired with a constant cj` that is not close to zero. The
constants cj` = 0 when xj and x`, are orthogonal. This fact is an important one for it will
allow one to determine which variables are “not” involved in collinear relationships.

Suppose βj is a critical parameter in your model, and there is one small eigenvalue, λk ≈ 0.
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If xj is not involved in the corresponding linear dependency , then cjk will be small, and
the fact that will not adversely affect the precision of estimation of βj. The presence of
collinearity in the data does not automatically mean that “all is lost.” If XTX has one or
more small eigenvalues, then you must think clearly about the objectives of your research,
and determine if the collinearity reduces the precision of estimation of your key parameters by
an unacceptable amount. This leads us to the next question, “What is a small eigenvalue?”

1.3 Variance Decomposition of Belsley et al. (1980)

A useful property of eigenvalues is that tr(XTX) =
∑k

i=1 λi. This implies that the size of
the eigenvalues is determined in part by the scaling of the data. Data matrices consisting of
large numbers will have larger eigenvalues, in total, than data matrices with small numbers.
To remove the effect of scaling Belsley et al. (1980)), whose collinearity diagnostic procedure
is proposed here, suggest scaling the columns of X to unit length. This scaling is only for
the purpose of diagnosing collinearity, not for model estimation or interpretation.

To diagnose collinearity, examine the proportion of the variance of each least squares co-
efficient contributed by each individual eigenvalue. Define φjk = c2jk/λk, and let φj be the
variance of bj, apart from the error variance, σ2.

φj =

(
c2j1
λ1

+
c2j2
λ2

+ . . .+
c2jk
λk

)
Then, the proportion of the variance of bj associated with the kth eigenvalue λk is

φjk
φj

.

Note the reversal of the subscripts. This is convenient for tabling the variance proportions,
which has a now standard format. The columns of the table correspond to the variances of
individual least squares coefficients, and the sum of each column is one. The rows of this
matrix correspond to the different eigenvalues, which have been scaled in a certain way. The
“condition index” is the square root of the ratio of the largest eigenvalue, λ1, to the `th

largest, λ`, that is,

η` =

(
λ1
λ`

) 1
2

.

The condition indices are ordered in magnitude, with η1 = 1 and ηk being the largest, since
its denominator is the smallest eigenvalue.

Table 1 summarizes much of what we can learn about collinearity in data. BKW carried
out extensive simulations to determine how large condition indices affect the variances of
the least squares estimators. Their diagnostic procedures, also summarized in Belsley (1991,
Chapter 5), are these:
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Condition Variance Proportions of OLS
Index var(b1) var(b2) · · · var(bk)

η1 φ11 φ12 · · · φ1k

η1 φ21 φ22 · · · φ2k

.

. · · · · · · · · · · · ·

.
ηk φk1 φk2 φkk

Table 1: Matrix of Variance Proportions

Step 1 Begin by identifying large condition indices. A small eigenvalue and a near exact
linear dependency among the columns of X is associated with each large condition in-
dex. BKW’s experiments lead them to the general guidelines that indices in the range
0-10 indicate weak near dependencies, 10-30 indicate moderately strong near depen-
dencies, 30-100 is a large condition index, associated with a strong near dependency,
and indices in excess of 100 are very strong. Thus when examining condition indexes
values of 30 and higher should immediately attract attention.

Step 2 This depends on the number of large condition numbers identified in Step 1

A single large condition number: Examine the variance-decomposition proportions.
If there is a single large condition number, indicating a single near dependency as-
sociated with one small eigenvalue, collinearity adversely affects estimation when
two or more coefficients have 50% or more of their variance associated with the
large condition index, in the last row of Table 1. The variables involved in the
near dependency have coefficients with large variance proportions.

Two or more large condition numbers of relatively equal magnitude: If there
are J ≥ 2 large and roughly equal condition numbers, then XTX has J eigen-
values that are near zero and J and there are J near exact linear dependencies
among the columns of X. Since the J corresponding eigenvectors span the space
containing the coefficients of the true linear dependence, the “50% rule” for iden-
tifying the variables involved in the near dependencies must be modified. In this
case, sum the variance proportions for the coefficients across the J large condi-
tion number rows in Table 1. The variables involved in the (set of) near linear
dependencies are identified by summed coefficient variance proportions of greater
than 50%. The variance proportions in a single row do not identify specific linear
dependencies, as they did when there was but one large condition number.

Two or more large condition numbers with one extremely large: An extremely
large condition index, arising from a very small eigenvalue, can “mask” the vari-
ables involved in other near exact linear dependencies. For example, if one condi-
tion index is 500 and another is 50, then there are two near exact linear dependen-
cies among the columns of X. However, the variance decompositions associated
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with the condition number of 50 may not indicate that there are two or more
variables involved in a relationship. Identify the variables involved in the set of
near linear dependencies by summing the coefficient variance proportions in the
last J rows of Table 1, and locating the sums greater than 50%.

Step 3 Perhaps the most important step in the diagnostic process is determining which
coefficients are not affected by collinearity. If there is a single large condition number,
coefficients with variance proportions less than 50% in the last row of Table 1 are not
adversely affected by the collinear relationship in the data. If there are J ≥ 2 large
condition numbers, then sum the last J rows of variance proportions. Coefficients
with summed variance proportions of less than 50% are not adversely affected by the
collinear relationships. If the parameters of interest have coefficients unaffected by
collinearity, then small eigenvalues and large condition numbers are not a problem.

Step 4 If key parameter estimates are adversely affected by collinearity, further diagnostic
steps may be taken. If there is a single large condition index the variance proportions
identify the variables involved in the near dependency. If there are multiple large
condition numbers, auxiliary regressions may be used to further study the nature of
the relationships between the columns of X. In these regressions one variable in a
near dependency is regressed upon the other variables in the identified set. The usual
t-statistics may be used as diagnostic tools to determine which variables are involved in
specific linear dependencies. See Belsley (1991, p. 144) for suggestions. Unfortunately,
these auxiliary regressions may also be confounded by collinearity, and thus they may
not be informative.

2 Identification in Nonlinear Models

Assessing the severity and consequences of nearly singular Hessians in nonlinear models is
more complicated than in linear models, since the invertibility of the Hessian can be due to
things other than collinearity of the variables of the model. The difficulties caused by the
extension to nonlinear models can be illustrated using nonlinear least squares model and
then extended to the context of maximum likelihood estimation, generalized linear models
and other models that require nonlinear estimators. The basic BKW variance decomposition
analysis extends easily to these situation.

2.1 Nonlinear Least Squares

Consider the nonlinear model
y = f(X, β) + e (4)
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where e ∼ (0, σ2IT ) and f(X, β) is some nonlinear function that relates the independent
variables and parameters to form the systematic portion of the model. The nonlinear least
squares estimator chooses β̂ to minimize S(β) = eT e. The least squares solution is

Z(β)T [y − f(X, β)] = 0 (5)

where Z(β) = ∂f(X, β)/∂β. The matrix of second derivatives is referred to as the Hessian
and is H(β) = ∂2f(X, β)/∂ββT . If there is more than one value of β that minimizes S, then
the parameters of the model are unidentified and cannot be estimated. This occurs when
the Hessian is singular and corresponds to perfect collinearity in the linear model. When the
Hessian is nearly singular, then the model is poorly identified and reliable estimates may be
difficult to obtain.

A useful algorithm for finding the minimum of S(β) is the Gauss-Newton. The Gauss-
Newton algorithm is based on a first order Taylor’s series expansion of f(X, β) around an
initial guess, β1, for the parameters, β. From that a pseudo-linear model is constructed

ȳ(β1) = Z(β1)β + e (6)

where ȳ(β1) = y−f(x, β1)+Z(β1)β1. Notice that the dependent variable, ȳ(β) and the regres-
sors, Z(β1) are completely determined given β1. The next round estimate, β2 is obtained by
using ordinary least squares on the pseudo-linear model, β2 = [Z(β1)

TZ(β1)]
−1Z(β1)

T ȳ(β1),
on equation (6). The iterations continue until βn=1 ≈ βn.

It can be shown that asymptotically

Z(β)TZ(β)/2T
.
= H(β)/T. (7)

Therefore, if H is nearly singular, then Z(β)TZ(β) will be as well. This implies that the
columns of Z(β) can be treated as regressors and analyzed using the diagnostic procedures
discussed in the preceding sections.

The Gauss-Newton algorithm is affected by collinearity among the columns of Z(β) since
[Z(βn)TZ(βn)] may become singular for any of its iterations. In fact, the model could be
well conditioned at the final solution, but be nearly singular at one of the many intermediate
points visited by the Gauss-Newton algorithm. Unfortunately, when a near singularity is
encountered the algorithm becomes numerically unstable and it often fails to converge. A
solution here is to pick better starting values that avoid regions of the parameter space for
which the function is ill-conditioned.

A more common scenario is that the function itself is badly behaved for many points in the
parameter space, including the actual minimum. In this instance, the collinearity problem is
very similar to that in linear models and can be examined by using the collinearity diagnostics
discussed above on the matrix of pseudo-regressors, Z(βn).
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The conditioning of the data can be influenced to some degree by rescaling the data. Many
convergence problems can be solved simply by scaling your variables in the appropriate way.
On the other hand, the ill-effects of collinearity may persist regarless of scaling. By this
we mean that precise estimates of the parameters are just not possible with the given data
no matter how they are scaled. To detect collinearity in this setup it is suggested that the
the columns of Z(β) be rescaled to have the same length before computing the collinearity
diagnostics. Large condition numbers indicate collinearity that cannot be further mitigated
by scaling.

Although there are other algorithms for finding the minimum of S(β) they are all likely to
suffer the same ill-effects from collinearity.1 It is possible that some may be better behaved
in the intermediate steps of the iterative solution. Nevertheless, the asymptotic result in
equation (7) suggests that in the end, it is unlikely that the ill-effects of collinearity can
be manipulated in a material way by using another estimator of the asymptotic covariance
matrix.

2.2 Maximum Likelihood

Maximum likelihood estimation can be approached in a similar fashion. Instead of minimiz-
ing the sum-of-squared errors function the goal is to choose parameter values that maximize
the log-likelhihood function, `(β,X). The algorithms use either first derivatives of `, the
second, or both. As in the Gauss-Newton algorithm for nonlinear least squares, each of the
algorithms involves inversion of the hessian (e.g., Newton-Raphson), its negative expectation
(the negative information matrix used in the method-of-scoring), or a cross-products matrix
of partial first derivatives (e.g. the method of Berndt, Hall, Hall, and Hausman). In any of
these instances, the inverted matrix evaluated at the each round of estimates is instrumental
in solving for the parameter values that maximize the likelihood function. If at any point
in the process it becomes singular or nearly so, estimation fails. If convergence occurs, then
the inverse of the estimated asymptotic covariance matrix can be subjected to conditioning
diagnostics in the same manner as the NLLS estimator.

2.3 Generalized Linear Models

This basic approach has been used in other contexts. Weissfeld and Sereika (1991) explore
the detection of collinearity in the class of generalized linear models (GLM). This broad class
of models includes the linear regression model, binary choice models like logit and probit,

1For instance, the Newton-Raphson, which is based on the second order Taylor’s series approximation,
uses the hessian computed at each round.
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polychotomous choice models, the Poisson regression model, the cox proportional hazard
model, and others (see McCullagh and Nelder (1989) for discussion). In the generalized
linear models the information matrix associated with the log-likelihood function can be
expressed generally as

I(β) = XTWX (8)

where W is a T × T diagonal weight matrix that often is a function of the unknown pa-
rameters, β, the independent variables, and the responses, y. In this form, Segerstedt and
Nyquist (1992) observe that ill-conditioning in these models can be due to collinearity of
the variables, X, the influence of the weights, W , or both. They suggest a transformation
of the data that, when plotted in the same diagram with the original data, can illuminate
the change in conditioning that occurs due to the weights. Unfortunately, the method is
manageable only in a few dimensions.

In GLM, Weissfeld and Sereika (1991) suggest applying the BKW condition number diag-
nostics to the the scaled information matrix (−E[H(β)]). Lee and Weissfeld (1996) do the
same for the Cox regression model with time dependent regressors. Although the variance
decompositions can be computed in these instances, their interpretation is not as straightfor-
ward since collinearity can also be due to the way the weights interact with the explanatory
variables.

Lesaffre and Marx (1993) also investigate the problem of ill-conditioning in generalized linear
models and take a slightly different approach. Following Mackinnon and Puterman (1989)
they suggest that only the columns of X be standardized to unit length, forming X1. Then,
conditioning diagnostics are computed on X1ŴX1, where Ŵ is the estimated weight matrix
based on the rescaled data.2 The square root of the ratio of largest to smallest eigenvalue
describes the worst relative precision with which linear combinations of the location parame-
ters can be estimated. Thus, this scaling gives a structural interpretation to the conditioning
diagnostic. One problem with this scaling is that X1ŴX1 could be ill-conditioned because
of the effects of Ŵ which could either cause the algorithm to fail or result in very large
estimated variances for the parameters of the model.

2.4 BKW diagnostics based on covariance

All of the approaches to diagnosing poorly identified models can be subjected to the condition
number, variance decomposition of BKW.

Even though the BKW diagnostic can identify weaknesses of the data or model, they cannot
distinguish problems in the data from problems with the parameters, since the two interact

2Note, X1ŴX1 is not rescaled. This is not the same as finding the condition number of the scaled
estimated inverse of the information matrix.
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often in a nonseparable way in the estimator’s covariance. Despite these problems, we
compute condition numbers and perform the BKW decomposition on the scaled estimated
inverse of the variance-covariance matrix. This is convenient in gretl since the variance-
covariance of on estimated model can be retrieved after estimation using the accessor $vcv.
The inverse variance-covariance matrix is scaled so that the principal diagonal has one in
each element. In recent releases of gretl, the vif command summons the BKW diagnostic
matrix after estimation of any model. Stata offers similar functionality. Refer to Adkins
et al. (2015) for computational details based on covariance.

3 Example: Ordered Probit

The ordered probit is easily estimated in modern software, gretl and Stata. It contains
additional parameters that are related to the number of categories, or bins, for the dependent
variable. These “cutoff” parameters determine the points at which the observation moves
from one category to the adjacent one when an independent variable changes. Following
(Greene, 2012, p. 787-788) the ordered probit model is treated as a latent variable, y∗i that
depends on a linear index, xTi β.

y∗i = xTi β + ei

The latent variable y∗ is unobserved. Instead we observe integers, y, such that

y=0 if y∗ ≤ 0
y=1 if 0 ≤ y∗ ≤ τ1
y=2 if τ1 ≤ y∗ ≤ τ2
...

...
y=J if τJ−1 ≤ y∗

The β and the τs are unknown parameters. If e is assumed to be normally distributed across
observations. To identify β, it is conventional to let σ = 1 in order to identify β. Then,

Prob(y = 0|x) = Φ(−xTβ)
Prob(y = 1|x) = Φ(τ1 − xTβ)− Φ(−xTβ)
Prob(y = 2|x) = Φ(τ2 − xTβ)− Φ(τ1 − xTβ)
...
Prob(y = J |x) = 1− Φ(τJ−1 − xTβ)

with 0 < τ1 < τ2 < . . . < τJ−1 and Φ(t) is the standard normal cdf evaluated at t.

In the following empirical example I model the probability of having children less than six
years of age using the data are from Mroz. The regressors include a constant, mother’s
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education, mother’s experience, and mother’s age. The dependent variable, kidls6, takes
integer values 0, 1, 2, and 3. Identification is about linear relationships among the regressors
as well as the parameterization of the model itself, which includes three regression coefficinets,
βs, and three cutoff parameters, τs.

The results:

Model 2: Ordered Probit, using observations 1–753
Dependent variable: kidsl6

Standard errors based on Hessian

Coefficient Std. Error z p-value

educ 0.0437362 0.0265277 1.6487 0.0992
exper −0.0282272 0.0101281 −2.7870 0.0053
age −0.102429 0.00984913 −10.3999 0.0000

cut1 −2.91206 0.516607 −5.6369 0.0000
cut2 −1.74208 0.512837 −3.3970 0.0007
cut3 −0.692334 0.547788 −1.2639 0.2063

Mean dependent var 0.237716 S.D. dependent var 0.523959
Log-likelihood −356.2304 Akaike criterion 724.4609
Schwarz criterion 752.2053 Hannan–Quinn 735.1494

Number of cases ‘correctly predicted’ = 610 (81.0 percent)
Likelihood ratio test: χ2(3) = 196.349 [0.0000]

Test for normality of residual –
Null hypothesis: error is normally distributed
Test statistic: χ2(2) = 2.42029
with p-value = 0.298154

The results suggest that educ is not significant at 5% and neither is the right-most cutoff
parameter. The collinearity diagnostics could shed light as to why.

The vif command in GRETL produces the BKW table as follows:

--- variance proportions ---

lambda cond educ exper age cut1 cut2 cut3

12



3.460 1.000 0.002 0.022 0.002 0.001 0.000 0.000

1.360 1.595 0.000 0.001 0.000 0.001 0.013 0.033

0.888 1.974 0.000 0.002 0.000 0.002 0.005 0.110

0.256 3.673 0.010 0.963 0.007 0.002 0.002 0.002

0.029 10.833 0.505 0.002 0.385 0.000 0.002 0.005

0.006 23.627 0.482 0.012 0.605 0.994 0.977 0.850

The second column includes the condition numbers and the last six columns are the variance
decompositions for the 3 variables and the 3 cutoff points. Overall, the conditioning is not
too bad since the largest condition number is 23.627, which is below the extreme threshold
of 30. The largest condition number plays a significant role in estimation of all three cutoff
parameters, which all have variance proportions greater than 85%. This suggests that these
parameters are relatively weakly identified by the model.

With one fairly high condition number there appears to be one moderately collinear rela-
tionship that involves education and age, and made worse by the existence of the cutoff
parameters. Surprisingly, of the four variables only education falls victim to weakness of the
data. Experience does not appear to be collinear with any of the other variables. The model
seems to be fairly well identified despite these issues.

Simulation

There are two sources of trouble with the identification of the ordered probit model. 1) the
data could be collinear and 2) the likelihood function as parameterized could be relatively
flat. The simulation explores both scenarios.

Collinear regressors There are three regressors in the model. A constant is not needed
since it is unidentified. However, in generation of the regressors for the simulations, one
is included so that a comparison with linear regression diagnostics can be made. For the
simulation the regressor matrix

X = {const, age, educ, exper}. (9)

is decomposed using SVD. X = UDV , where D is a diagonal matrix containing the eigen-
values of the original data. These are replaced using the desired ones Λ as in X = UΛV .

Four sets of eigenvalues for the SVD are considered. The first makes the regressors mutually

13



orthogonal. Others impart various degrees and types of collinearity. The sets considered are:

Eigenvalues Collinearity
Λ = {1, 1, 1, 1} None
Λ = {10, 7, 4, 1} Moderate
Λ = {10, 1, 1, 0.1} Moderate
Λ = {10, 10, 0.1, 0.1} Moderately Severe
Λ = {10, 0.1, 0.05, 0.05} Severe

(10)

To keep the overall variability of the data constant, the eigenvalues are rescaled to have equal
length that is similar to the original Mroz data.

Parameters Gretl estimates the model using three cutoff parameters and no constant,
which is not identified. Because the identification of the model could be affected by the
cut-off parameters, several sets are used. The cutoff parameters are set by taking the mean
of Xβ and adding c such that P (X < c) = p with the parameter p chosen from

Cumulative Prob Bin Size
p = {0.1, 0.5, 0.9} Wide
p = {0.1, 0.3, 0.5} Moderate
p = {0.1, 0.2, 0.3} Narrow

(11)

The parameters from the regression are set to β is set to {−0.1, 0.05,−0.02}, which mimic
the values of the parameters when the original data are used.

Table 2 shows the average condition numbers for each of the collinearity designs.
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Table 2: Average condition numbers for the various collinearity designs. Large bins, p =
{0.1, 0.5, 0.9}.

Collinearity among variables
Cond {1,1,1,1} {10,1,1,0.1} {10,0,0.1,0.1} {10,.1,.05,.05}

η1 1.000 1.000 1.000 1.000 1.000
η2 1.101 1.260 1.568 1.331 1.601
η3 1.138 1.351 1.831 1.517 1.899
η4 1.326 1.573 5.270 1.669 17.320
η5 1.972 2.624 8.134 15.470 62.650
ηl 14.280 18.530 24.280 75.860 171.300
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Notice that even when the variables are mutually orthogonal (column 1) there is still evidence
of weakening identification. This has to be due to the functional form for ordered probit.
As collinearity worsens, the largest condition number increases in magnitude. By the time
collinearity is very bad (rightmost column), there are several condition numbers that lie
above the BKW suggested threshold of 30.

Bin size also affects the condition numbers. This is shown in Table 3. The collinearity regime
for these results is Λ = {10, 7, 4, 1}, which is very mild. The first panel has a small bin at each
extreme (p < 0.1 and p > 0.9), but wide bins in the middle of the distribution. The second
panel has one very wide bin at the upper extreme and moderately narrow ones at the lowest.
The bottom panel has very narrow bins at the lower end and 70% probability of landing in
the last one. One can see that as the bins get narrower at the bottom end, conditioning
worsens as ηl increases from 18.53 to 29.41. You also see that as the condition number gets
larger, the standard errors of the cutoff parameters gets larger. This is indicated by the large
and increasing variance proportions in each of the last three columns of the BKW tables.

Specific subsets of the simulation results appear in Tables 4-7 below. In Table 4 the best
case scenario for ordered probit is found. Here, all of the regressors are orthogonal to one
another and the bins for the ordered response are centered around 0.5 and relatively wide
(at least in the center of the distribution). The summary statistics show that the MLE has
low bias (perhaps unbiased) for this design. The overall variability of the estimates is very
small. The t-ratio measures the relative precision of the MLE (not its unbiasedness).

The variance proportion table shows evidence of some ill-conditioning that is independent of
the data, which are orthogonal. The first six condition numbers increase steadily from one
to two and the last is 14.27. This falls within the moderate level for the BKW diagnostics
in linear models.

Further, the largest condition number affects each of the parameters, though mostly x1 and
the three cutoff parameters.

The standard errors of the condition numbers and the variance decompositions appear at the
bottom panel of each table. Since the regressors are not changing in the simulation, all of the
variance is due to the parameter estimates. The relative precision of the parameter estimates
is evidenced by the small standard deviations in this panel for all of the statistics computed.
It is easy to conclude that parameter variation due to their estimation is not contributing to
any significant degree the relative magnitudes of the diagnostics themselves. For instance,
comparing the bottom panels of tables 4 and 7 (no collinearity and high collinearity, respec-
tively) more collinear regressors are causing more variance in the condition numbers, but
not in the variance proportions. These appear to be fairly invariant to collinearity among
regressors. The implication is that the diagnostics themselves change in predictable ways as
collinearity changes, but the variation of the measures is fairly constant in each design.
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In Table 5 the degree of collinearity in the variables is introduced. The overall level is kept
moderately low. The standard errors of the estimated cutoff parameters increases relative
to the baseline.

The average largest condition number is 24.31 indicating that identification is becoming more
challenging. The high variance proportions for the cutoff parameters is consistent with the
higher standard errors found in the upper panel. The collinearity of the variables themselves
does not appear to be much of a problem, except possibly for x1 which shares a large variance
proportion with the cutoffs.

Tables 6 and 7 show the effects of increasing collinearity among the regressors. In the first
case, only two of the regressors are highly collinear and in the second, all three are collinear
with each other. In Table 6 there is a single large condition number that affects estimation of
the βs, but not the cutoffs. Relative to the βs, the cutoffs are not affected to a large extent
by collinearity of the variables. So, as collinearity of the variables gets worse, identification
of their parameters weakens while that of the cutoffs improves, at least relatively.

In Table 7 there are two large condition numbers, with β1 and β2 being weakly identified. The
other parameter, β3, appears to be fairly well identified. In all of these cases, the variation
caused by parameter estimation is low.
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Table 3: Various bin sizes for a mildly collinear data in Ordered Probit. Λ = 10, 7, 4, 1.
There is only 1 relatively large condition number in this scenario.

Bin Size: p = 0.1, 0.5, 0.9
β1 β2 β3 τ1 τ2 τ3

True -0.100 0.050 -0.020 -3.366 -2.084 -0.803
Mean -0.099 0.051 -0.020 -3.340 -2.062 -0.769

Std Err 0.012 0.009 0.003 0.377 0.365 0.354
ηl φl1 φl2 φl3 φl4 φl5 φl6

18.530 0.978 0.634 0.448 0.977 0.989 0.968

Bin Size: p = 0.1, 0.3, 0.5
β1 β2 β3 τ1 τ2 τ3

True -0.100 0.050 -0.020 -3.366 -2.609 -2.084
Mean -0.099 0.052 -0.020 -3.322 -2.558 -2.043

Std Err 0.013 0.010 0.003 0.392 0.388 0.381
ηl φl1 φl2 φl3 φl4 φl5 φl6

23.220 0.979 0.619 0.472 0.984 0.995 0.992

Bin Size: p = 0.1, 0.2, 0.3
β1 β2 β3 τ1 τ2 τ3

True -0.100 0.050 -0.020 -3.366 -2.926 -2.609
Mean -0.099 0.052 -0.020 -3.326 -2.880 -2.562

Std Err 0.014 0.010 0.004 0.429 0.424 0.423
ηl φl1 φl2 φl3 φl4 φl5 φl6

29.410 0.980 0.594 0.500 0.991 0.997 0.995
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Monte Carlo Summary Statistics
β1 β2 β3 τ1 τ2 τ3

True -0.100 0.050 -0.020 -2.353 -1.071 0.2104
Mean -0.101 0.051 -0.020 -2.361 -1.073 0.2263

Std Err 0.018 0.008 0.004 0.289 0.281 0.2793
t-ratio -0.040 0.120 0.014 -0.030 -0.008 0.0569

Averages of the Variance Proportion Table
ηl β1 β2 β3 τ1 τ2 τ3

1.0000 0.0058 0.0200 0.0031 0.0027 0.0004 0.0070
1.1010 0.0020 0.0322 0.0043 0.0132 0.0009 0.0037
1.1380 0.0017 0.0014 0.0019 0.0020 0.0153 0.0061
1.3260 0.0013 0.0003 0.3843 0.0001 0.0000 0.0001
1.9690 0.0056 0.1656 0.0034 0.0191 0.0001 0.0257
14.2700 0.9836 0.7805 0.6029 0.9629 0.9832 0.9574

Standard Errors of the Variance Proportion Table
- 0.0003 0.0021 0.0005 0.0006 0.0003 0.0006

0.0082 0.0006 0.0037 0.0021 0.0017 0.0014 0.0018
0.0128 0.0010 0.0019 0.0022 0.0016 0.0018 0.0014
0.0107 0.0002 0.0004 0.0048 0.0001 0.0001 0.0001
0.0584 0.0006 0.0101 0.0041 0.0022 0.0001 0.0028
0.1252 0.0006 0.0098 0.0035 0.0029 0.0008 0.0036

Table 4: Orthogonal Regressors: Λ = {1, 1, 1, 1}, with Wide Bins: p={0.1, 0.5, 0.9}. Results
based on 100 Monte Carlo samples.
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Monte Carlo Summary Statistics
β1 β2 β3 τ1 τ2 τ3

True -0.100 0.050 -0.020 -5.197 -3.916 -2.634
Mean -0.101 0.049 -0.019 -5.252 -3.943 -2.667

Std Err 0.007 0.014 0.010 0.380 0.364 0.348
t-ratio -0.119 -0.086 0.126 -0.145 -0.077 -0.096

Averages of the Variance Proportion Table
ηl β1 β2 β3 τ1 τ2 τ3

1.0000 0.0016 0.0043 0.0111 0.0006 0.0003 0.0005
1.5680 0.0000 0.0000 0.0001 0.0035 0.0080 0.0047
1.8320 0.0000 0.0009 0.0006 0.0125 0.0001 0.0144
5.2570 0.0035 0.0885 0.7976 0.0111 0.0044 0.0008
8.1320 0.1624 0.4825 0.0942 0.0022 0.0092 0.0208
24.3100 0.8325 0.4238 0.0964 0.9701 0.9780 0.9587

Standard Errors of the Variance Proportion Table
- 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000

0.0149 0.0000 0.0000 0.0000 0.0006 0.0003 0.0006
0.0045 0.0000 0.0001 0.0002 0.0012 0.0001 0.0015
0.0691 0.0007 0.0057 0.0225 0.0010 0.0004 0.0002
0.1256 0.0072 0.0208 0.0162 0.0003 0.0008 0.0022
0.2551 0.0073 0.0159 0.0095 0.0015 0.0012 0.0032

Table 5: Moderate Collinearity: Λ = {10, 1, 1, 0.1}, with Wide Bins: p={0.1, 0.5, 0.9}.
Results based on 100 Monte Carlo samples.
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Monte Carlo Summary Statistics
β1 β2 β3 τ1 τ2 τ3

True -0.100 0.050 -0.020 -3.650 -2.368 -1.086
Mean -0.103 0.054 -0.020 -3.706 -2.410 -1.124

Std Err 0.044 0.179 0.004 0.285 0.284 0.287
t-ratio -0.062 0.023 -0.108 -0.200 -0.147 -0.131

Averages of the Variance Proportion Table
ηl β1 β2 β3 τ1 τ2 τ3

1.0000 0.0002 0.0001 0.0000 0.0008 0.0007 0.0007
1.3310 0.0000 0.0000 0.0003 0.0053 0.0064 0.0057
1.5160 0.0000 0.0000 0.0612 0.0068 0.0001 0.0068
1.6720 0.0000 0.0000 0.0612 0.0083 0.0002 0.0118
15.4900 0.0185 0.0031 0.1978 0.6253 0.6094 0.5738
75.8800 0.9813 0.9968 0.6794 0.3534 0.3833 0.4012

Standard Errors of the Variance Proportion Table
- 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001

0.0107 0.0000 0.0000 0.0003 0.0006 0.0002 0.0007
0.0154 0.0000 0.0000 0.0032 0.0010 0.0001 0.0011
0.0235 0.0000 0.0000 0.0035 0.0013 0.0001 0.0016
0.1385 0.0004 0.0001 0.0044 0.0091 0.0064 0.0038
0.2485 0.0004 0.0001 0.0050 0.0092 0.0065 0.0032

Table 6: Severe Collinearity: Λ = {10, 10, 0.1, 0.1}, with Wide Bins: p={0.1, 0.5, 0.9}.
Results based on 100 Monte Carlo samples.
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Monte Carlo Summary Statistics
β1 β2 β3 τ1 τ2 τ3

True -0.100 0.050 -0.020 -5.974 -4.692 -3.411
Mean -0.098 0.027 -0.009 -6.069 -4.771 -3.472

Std Err 0.050 0.191 0.078 0.356 0.344 0.337
t-ratio 0.041 -0.123 0.144 -0.267 -0.228 -0.181

Averages of the Variance Proportion Table
ηl β1 β2 β3 τ1 τ2 τ3

1.0000 0.0000 0.0000 0.0001 0.0005 0.0003 0.0004
1.6050 0.0000 0.0000 0.0000 0.0037 0.0074 0.0049
1.9000 0.0000 0.0000 0.0000 0.0122 0.0001 0.0164
17.3200 0.0010 0.0003 0.0153 0.5755 0.5384 0.4904
62.7300 0.0660 0.0355 0.9750 0.1401 0.1510 0.1537
171.5000 0.9330 0.9643 0.0096 0.2680 0.3028 0.3342

Standard Errors of the Variance Proportion Table
- 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0142 0.0000 0.0000 0.0000 0.0006 0.0003 0.0007
0.0069 0.0000 0.0000 0.0000 0.0014 0.0001 0.0019
0.2352 0.0001 0.0000 0.0005 0.0167 0.0132 0.0113
0.3206 0.0010 0.0006 0.0013 0.0128 0.0112 0.0099
0.6394 0.0010 0.0006 0.0012 0.0160 0.0134 0.0105

Table 7: Severe Collinearity: Λ = {10, 0.1, 0.05, 0.05}, with Wide Bins: p={0.1, 0.5, 0.9}.
Results based on 100 Monte Carlo samples.
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The variance decomposition diagnostics clearly show that the smallest eigenvalue is wreaking
havoc on estimation of the βs, but not so much for the cutoffs which had very substantial
average t-ratios due to smallish standard errors. I would tentatively conclude that the
ordered probit functional form is fairly robust with respect to identification of parameters.
Of course, other designs may reveal otherwise.

4 Final Thoughts

To sum up, the BKW diagnostics appear to be quite useful in identifying problems with
nonlinear estimation. Large condition numbers that have large effects on the variances of
two or more coefficients can signal issues with the data or the model. Also, higher collinearity
among variables may actually be useful if interest is on other parameters in the model. This
is counterintuitive and deserves additional investigation.
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